Abstract
This chapter provides an overview of the use of hydrogen bonds for the construction of nanoporous materials. These materials attract a great deal of interest because of their large surface area to volume ratio and their applications in areas such as filtration, separation, adsorption, catalysis, and ion conduction. Organic materials are especially appealing for these applications, because their properties can be tailored. The use of supramolecular interactions is required to control the organization of materials at the molecular level. Hydrogen bonds are ideal supramolecular interactions for the construction of these nanoporous materials, thanks to their directionality and reversibility. The directionality causes the positioning molecules in such a way that voids have been created in between the molecules, such as in two- and three-dimensional hydrogen bonded organic frameworks. In a second approach, hydrogen bonded template molecules have been removed from a polymer to create pores. This method is successfully applied to hydrogen bonded block copolymers and liquid crystalline polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.