Abstract

AbstractUnique nanocomposites consisting of poly(silicic acid) nanoparticles (PNs) and waterborne polyurethane (WPU) were prepared. The aliphatic WPU prepared in this study was end‐capped with a silanol group, which could react with PNs via a sol–gel process. PNs were modified with phenyltrimethoxysilane (PTMS) and 3‐(trimethoxysilyl)propyl ester (TMPE) and then blended with WPU. The structure–property relationships were examined. Solid‐state 29Si NMR spectra of WPU showed that structures T1, T2, and T3 of WPU decreased and structures Q3 and Q4 of PN/WPU nanocomposites increased gradually. When the PN concentration increased to 10 wt %, PN/WPU nanocomposites exhibited the maximum fraction of hydrogen‐bonded carbonyl groups. In the PTMS–PN and TMPE–PN systems, the fraction of hydrogen‐bonded carbonyl groups fluctuated stably when the concentrations of PTMS–PN and TMPS–PN exceeded 5 wt %. The X‐ray diffraction results revealed that α‐form, γ‐form, or triclinic crystallization could be found in the WPU matrix. A differential scanning calorimetry spectrum showed that the crystalline structure of the hard segment of WPU was influenced by the nanoparticle concentration. The degrees of crystallinity were 88% for the PN/WPU nanocomposites, 41% for the PTMS–PN/WPU nanocomposites, and 54% for the TMPE–PN/WPU nanocomposites when the PN, PTMS–PN, and TMPE–PN concentrations were 5 wt %. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1076–1089, 2005

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call