Abstract
Values of k(o) = 8.0 x 10(-3) s(-1) and k(H) = 2.5 x 10(-2) M(-1) s(-1), respectively, were determined for the spontaneous and the acid-catalyzed cleavage of 4-methoxybenzyl fluoride (1-F) to form the 4-methoxybenzyl carbocation (1+). Values of k(F) = 1.8 x 10(7) M(-1) s(-1) and k(HF) = 7.2 x 10(4) M(-1) s(-1) were determined for addition of F- and HF to 1+ for reaction in the microscopic reverse direction. Evidence is presented that the reversible addition of HF to 1+ to give 1-F + H+ proceeds by a concerted reaction mechanism. The relatively small 250-fold difference between the reactivities of fluoride ion and neutral HF toward 1+ is attributed to the tendency of the strong aqueous solvation of F- to decrease its nucleophilic reactivity and to the advantage for the concerted compared with the usual stepwise pathway for addition of HF. There is no significant stabilization of the transition state for cleavage of 1-F from general acid catalysis by 0.80 M cyanoacetate buffer at pH 1.7. The estimated 3 kcal/mol larger Marcus intrinsic barrier for heterolytic cleavage of 1-F than for cleavage of 1-Cl is attributed to a lag in the development at the transition state of the ca. 30 kcal/mol greater stabilizing solvation of the product ion F- compared with Cl-. The decrease in the electronegativity of X along the series X = F, OH, Cl is accompanied by a ca. 10(10)-fold increase in the carbon basicity compared with the proton basicity of X-.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.