Abstract

AbstractMolecular room‐temperature phosphorescent (RTP) materials with long‐lived excited states have attracted widespread attention in the fields of optical imaging, displays, and sensors. However, accessing ultralong RTP systems remains challenging and examples are still limited to date. Herein, a thermally activated delayed fluorescence (TADF)‐assisted energy transfer route for the enhancement of persistent luminescence with an RTP lifetime as high as 2 s, which is higher than that of most state‐of‐the‐art RTP materials, is proposed. The energy transfer donor and acceptor species are based on the TADF and RTP molecules, which can be self‐assembled into two‐component ionic salts via hydrogen‐bonding interactions. Both theoretical and experimental studies illustrate the occurrence of effective Förster resonance energy transfer (FRET) between donor and acceptor molecules with an energy transfer efficiency as high as 76%. Moreover, the potential for application of the donor–acceptor cocrystallized materials toward information security and personal identification systems is demonstrated, benefitting from their varied afterglow lifetimes and easy recognition in the darkness. Therefore, the work described in this study not only provides a TADF‐assisted FRET strategy toward the construction of ultralong RTP, but also yields hydrogen‐bonding‐assembled two‐component molecular crystals for potential encryption and anti‐counterfeiting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.