Abstract

The conformation of the N-linked complex glycopeptide of fetuin was examined with hydrogen-exchange techniques. The glycopeptide molecule contains eight acetamido hydrogens stemming from five N-acetylglucosamine residues and three N-acetylneuraminic acid residues and also one from the remaining sugar-peptide linkage. The hydrogen-exchange rates of these secondary amides were compared with small molecule model compounds having identical primary structures at their exchangeable hydrogen sites. Differences between the model rates and glycopeptide rates therefore cannot be accounted for by primary structure effects but reflect conformational features of the glycopeptide. Two glycopeptide hydrogens exhibit significantly hindered exchange; the rest exchange at the model rates. Removal of the three N-acetylneuraminic acid residues from terminal positions on the three branches of the glycopeptide removes the slowed hydrogens. The remaining ones continue to exchange at the model rate. These results indicate that two of the eight sugar acetamido hydrogens are involved in intramolecular hydrogen bonds. A likely structure includes two hydrogen bonds between the three N-acetylneuraminic acid residues. These two hydrogens, slowed to a moderate degree, reflect a preferred conformation stabilized by about 1 kcal/mol in free energy. The solution conformation of the glycopeptide suggested by these results is one that is partially ordered and can be easily modulated, owing to the relatively small amount of energy stabilizing the preferred conformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.