Abstract

Biomolecular condensates formed via phase separation of intrinsically disordered proteins/regions (IDPs/IDRs) and nucleic acids are associated with cell physiology and disease. Water makes up for ∼60-70% of the condensate volume and is thought to influence the complex interplay of chain-chain and chain-solvent interactions, modulating the mesoscale properties of condensates. The behavior of water in condensates and the key roles of protein hydration water in driving the phase separation remain elusive. Here, we employ single-droplet vibrational Raman spectroscopy to illuminate the structural redistribution within protein hydration water during the phase separation of neuronal IDPs. Our Raman measurements reveal the changes in the water hydrogen bonding network during homotypic and heterotypic phase separation governed by various molecular drivers. Such single-droplet water Raman measurements offer a potent generic tool to unmask the intriguing interplay of sequence-encoded chain-chain and chain-solvent interactions governing macromolecular phase separation into membraneless organelles, synthetic condensates, and protocells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.