Abstract

Xe/Kr separation is an industrially important but challenging process owing to their inert properties and low concentrations in the air. Energy-effective adsorption-based separation is a promising technology. Herein, two isostructural hydrogen-bonded metal-nucleobase frameworks (HOF-ZJU-201 and HOF-ZJU-202) are capable of separating Xe/Kr under ambient conditions and strike an excellent balance between capacity and selectivity. The Xe capacity of HOF-ZJU-201a reaches 3.01 mmol g-1 at 298 K and 1.0 bar, while IAST selectivity and Henry's selectivity are 21.0 and 21.6, respectively. Direct breakthrough experiments confirmed the excellent separation performance, affording a Xe capacity of 25.8 mmol kg-1 from a Xe/Kr mixed-gas at dilute concentrations. Density functional theory calculations revealed that the selective binding arises from the enhanced polarization in the confined electric field produced by the electron-rich anions and the electron-deficient purine heterocyclic rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.