Abstract

The human brain FABP (FABP7) has been shown to be an intracellular carrier protein that can significantly potentiate the uptake of the endocannabinoid anandamide. For this reason, there is a great interest in the discovery and development of FABP7 inhibitors for treating stress, pain, inflammation, and drug abuse. We found that in the (1) H-NMR spectrum of the protein, a well-separated downfield resonance arising from the hydrogen-bonded His93 side chain is very sensitive to ligand binding. Using this characteristic spectral marker together with another well-resolved upfield resonance from the side chain of Val84, we have identified that an adipocyte FABP (FABP4) inhibitor BMS309403 also binds tightly to FABP7. Our data demonstrated that this unique His93 downfield resonance can be used as a sensitive probe for rapidly and unambiguously identifying novel high-affinity FABP7 ligands. The findings should help accelerate the discovery of potential drug leads for the modulation of endocannabinoid transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.