Abstract

The diatomic molecule PH is very reactive, and it serves as the parent compound for phosphinidenes featuring a monovalent phosphorus atom. Herein, we report the characterization and reactivity of a rare hydrogen-bonded complex of PH. Specifically, the molecular complex between PH and HCl has been generated by photolysis of chlorophosphine (H2PCl) at 254 nm in a solid Ar-matrix at 10 K. The IR spectrum of the complex HP⋅⋅⋅HCl and quantum chemical calculations at the UCCSD(T)-F12a/haTZ level consistently prove that the phosphorus atom acts as a hydrogen bond acceptor with a binding energy (D0) of -0.6 kcal mol-1. In line with the observed absorption at 341 nm for the binary complex, the triplet phosphinidene PH undergoes prototype H-Cl bond insertion by reformation of H2PCl upon photoexcitation at 365 nm. However, this hydrogen-bonded complex is unstable in the presence of N2 and HCl, as both molecules prefers stronger interactions with HCl than PH in the observed complexes HP⋅⋅⋅HCl⋅⋅⋅N2 and HP⋅⋅⋅2HCl.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.