Abstract

The paper reports on the synthesis, crystal structure, thermal and magnetic properties of spin crossover (SCO) salts containing the [Fe(bpp)2]2+ cation (bpp = 2,6-bis(pyrazol-3-yl)pyridine) and different rigid polycarboxylate anions, such as anthracene-9,10-dicarboxylate (ADC), benzene-1,3,5-tricarboxylate (BTC) and biphenyl-4,4'-dicarboxylate (BPDC). Compound [Fe(bpp)2](ADC)·9H2O (1) shows a porous hydrogen-bonded structure with water molecules sitting in the channels. It contains low-spin (LS) Fe2+ cations that undergo crossover to the high-spin (HS) state upon dehydration. Anhydrous 1 remains HS on cooling at low temperatures. A similar magnetic behaviour is obtained for the partially protonated BTC salt [Fe(bpp)2](HBTC)·5H2O (2), showing a spin change concomitant with dehydration to a HS phase that undergoes gradual and partial SCO on cooling, affecting 25% of the Fe2+ cations. Instead, the BPDC salt [Fe(bpp)2](BPDC)·5H2O (3) has a ground HS state in its fully hydrated form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call