Abstract

Dispersion-corrected density functional theory (DFT) and MP2 quantum chemical methods are used to examine homodimers of temozolomide (TMZ). Of the 12 dimer configurations found to be minima, the antarafacial stacked dimer is the most favored, it is lower in energy than coplanar dimers which are stabilized by H-bonds. The comparison between B3LYP and B3LYP-D binding energies points to dispersion as a primary factor in stabilizing the stacked geometries. CO(π) → CO(π*) charge transfers between amide groups in the global minimum are identified by NBO, as well as a pair of weak CH∙∙N H-bonds. AIM analysis of the electron density provides an alternative description which includes N∙∙O, N∙∙N, and C∙∙C noncovalent bonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.