Abstract

Two dimeric boron complexes of potentially tetradentate and trianionic β-diketiminate ligands bearing phenol substituents were prepared and characterized. The synthetic routes employed were designed to circumvent the undesirable formation of β-ketimines and 2-methylbenzoxazoles observed when traditional synthetic routes toward the target β-diketiminate ligands were attempted. The title complexes were isolated via demethylation of β-diketimine ligands and boron difluoride complexes bearing 2-anisole N-aryl substituents using boron tribromide. The resulting complexes were found to contain a unique hydrogen-bond-supported boron-oxygen-boron bridge, as confirmed by X-ray crystallography. The stability of the resulting dimeric structures relative to the corresponding monomeric, tetradentate boron complexes was studied computationally, and theory confirmed that the dimeric structures were strongly favored. The absorption spectra of the dimers were red-shifted relative to the parent β-diketimine ligands. The complexes were irreversibly oxidized and reduced electrochemically and were weakly emissive at low concentrations (Stokes shifts between 23 and 31 nm), showing little solvent dependence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.