Abstract
Ultralong phosphorescent materials have numerous applications across biological imaging, light-emitting devices, X-ray detection and anti-counterfeiting. Triplet-state molecular phosphorescence typically accompanies the singlet-state fluorescence during photoluminescence, and it is still difficult to achieve direct triplet photoemission as ultralong room temperature phosphorescence (RTP). Here, we have designed Zn-IMDC (IMDC, 4,5-imidazoledicarboxylic acid) and Cd-IMDC, two-dimensional (2D) hydrogen-bond organized metal–organic crystalline microsheets that exhibit rarely direct ultralong RTP upon UV excitation, benefiting from the appropriate heavy-atom effect and multiple triplet energy levels. The excitation-dependent and thermally stimulated ultralong phosphorescence endow the metal–organic systems great opportunities for information safety application and temperature-gated afterglow emission. The well-defined 2D microsheets present color-tunable and anisotropic optical waveguides under different excitation and temperature conditions, providing an effective way to obtain intelligent RTP-based photonic systems at the micro- and nano-scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.