Abstract

We have studied the conformational landscape of the C-terminal fragment of the amyloid protein Aβ30-35 in water using well-tempered metadynamics simulations and found that it resembles an intrinsically disordered protein. The conformational fluctuations of the protein are facilitated by a collective reorganization of both protein and water hydrogen bond networks, combined with electrostatic interactions between termini as well as hydrophobic interactions of the side chains. The stabilization of hydrophobic interactions in one of the conformers involves a collective collapse of the side chains along with a squeeze-out of water sandwiched between them. The charged N- and C-termini play a critical role in stabilizing different types of protein conformations, including those involving contact-ion salt bridges as well as solvent-mediated interactions of the termini and the amide backbone. We have examined this by probing the distribution of directed water wires forming the hydrogen bond network enveloping the polypeptide. Water wires and their fluctuations form an integral part of structural signature of the protein conformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.