Abstract

NMR experiments and ab initio calculations suggest that methanol forms small cyclic hydrogen bond clusters (4-6 molecules) in the condensed phase. In contrast, molecular dynamics simulations have indicated that methanol will form large branched chains that extend to include hundreds of molecules. In this paper, we performed a series of simulations examining the structure and dynamics of methanol/carbon tetrachloride mixtures. We show that two simulation models are capable of reproducing the trends in the experimental NMR data despite the fact that they indicate that the structure of the liquid is dominated by large branched chains. We hypothesize that the experimental results can be described by variations in the hydrogen bond lifetime with methanol concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.