Abstract

Directly investigating hydrogen bond (HB) dynamics in molecular materials is a challenging task. Here, we report a set of porphyrin isomers, porphycenes, that visualize slight changes on the order of picometers in the intramolecular HB dynamics. Intramolecular HBs of porphycenes were regulated by the systematic modification at meso positions with methyl (Me), cyclopentyl (Cy5), and cyclohexyl (Cy6) moieties. Notably, the quantum yields varied from 35 to 0.04% in chloroform, depending on a slight distortion in the porphycene framework. SC-XRD, XPS, and NMR clearly revealed that the Me and Cy6 moieties increased the nonradiative deactivation by strengthening the intramolecular NH···N HBs whereas Cy5 retained their photoluminescence properties. This is the first example of how the distortion of planar porphyrinoids at the picometer level along with the strength of the intramolecular NH···N HBs can drastically affect their optical properties. The results revealed new avenues of HB engineering based on porphyrinoids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.