Abstract
Hydrogen bond dynamics of water in NaBr solutions are studied by using ultrafast 2D IR vibrational echo spectroscopy and polarization-selective IR pump-probe experiments. The hydrogen bond structural dynamics are observed by measuring spectral diffusion of the OD stretching mode of dilute HOD in H(2)O in a series of high concentration aqueous NaBr solutions with 2D IR vibrational echo spectroscopy. The time evolution of the 2D IR spectra yields frequency-frequency correlation functions, which permit quantitative comparisons of the influence of NaBr concentration on the hydrogen bond dynamics. The results show that the global rearrangement of the hydrogen bond structure, which is represented by the slowest component of the spectral diffusion, slows, and its time constant increases from 1.7 to 4.8 ps as the NaBr concentration increases from pure water to approximately 6 M NaBr. Orientational relaxation is analyzed with a wobbling-in-a-cone model describing restricted orientational diffusion that is followed by complete orientational randomization described as jump reorientation. The slowest component of the orientational relaxation increases from 2.6 ps (pure water) to 6.7 ps (approximately equal to 6 M NaBr). Vibrational population relaxation of the OD stretch also slows significantly as the NaBr concentration increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.