Abstract
Staphylococcus aureus IsdG catalyzes the final step of staphylococcal iron acquisition from host hemoglobin, whereby host-derived heme is converted to iron and organic products. The Asn7 distal pocket residue is known to be critical for enzyme activity, but the influence of this residue on the substrate electronic structure was unknown prior to this work. Here, an optical spectroscopic and density functional theory characterization of azide- and cyanide-inhibited wild type and N7A IsdG is presented. Magnetic circular dichroism data demonstrate that Asn7 perturbs the electronic structure of azide-inhibited, but not cyanide-inhibited, IsdG. As the iron-ligating α-atom of azide, but not cyanide, can act as a hydrogen bond acceptor, these data indicate that the terminal amide of Asn7 is a hydrogen bond donor to the α-atom of a distal ligand to heme in IsdG. Circular dichroism characterization of azide- and cyanide-inhibited forms of WT and N7A IsdG strongly suggests that the Asn7···N3 hydrogen bond influences the orientation of a distal azide ligand with respect to the heme substrate. Specifically, density functional theory calculations suggest that Asn7···N3 hydrogen bond donation causes the azide ligand to rotate about an axis perpendicular to the porphyrin plane and weakens the π-donor strength of the azide ligand. This lowers the energies of the Fe 3d xz and 3d yz orbitals, mixes Fe 3d xy and porphyrin a 2u character into the singly-occupied molecular orbital, and results in spin delocalization onto the heme meso carbons. These discoveries have important implications for the mechanism of heme oxygenation catalyzed by IsdG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.