Abstract

The strength of binding, as measured by the equilibrium dissociation energy De of an isolated hydrogen-bonded complex B···HX, where B is a simple Lewis base and X = F, Cl, Br, I, CN, CCH, or CP, can be determined from the properties of the infinitely separated components B and HX. The properties in question are the maximum and minimum values σmax(HX) and σmin(B) of the molecular electrostatic surface potentials on the 0.001 e/bohr3 iso-surfaces of HX and B, respectively, and two recently defined quantities: the reduced electrophilicity ΞHX of HX and the reduced nucleophilicity ИB of B. It is shown that De is given by the expression De = {σmax(HX)σmin(B)} ИB ΞHX. This is tested by comparing De calculated ab initio at the CCSD(T)(F12c)/cc-pVDZ-F12 level of theory with that obtained from the equation. A large number of complexes (203) falling into four categories involving different types of hydrogen-bonded complex B···HX are investigated: those in which the hydrogen-bond acceptor atom of B is either oxygen or nitrogen, or carbon or boron. The comparison reveals that the proposed equation leads to De values in good agreement in general with those calculated ab initio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call