Abstract

It has always been the goal of flame retardant research to improve the flame retardancy of a polymer efficiently without compromising comprehensive properties such as mechanical properties. For polyvinyl alcohol (PVA), inspired by the multiple hydrogen bonding in spider silk, we design a new type of compound containing phosphorus and nitrogen with multiple hydrogen-bonding reaction sites (N,N',N''-tris(2-aminoethyl)phosphoric triamide (TE)) as it is flame retardant. The dynamic cross-linking structure is constructed, and the hyperdispersion of flame retardancy is achieved by the hydrogen bond self-assembly between TE and PVA, thus the high-performance flame retardant PVA is obtained. With only a 10 wt % addition of TE, the PVA film with a thickness of 0.15 mm can reach the UL94 VTM-0 level, and its tensile strength, ductility, and initial decomposition temperature can be increased by 33, 15, and 12 °C, respectively. In addition, the hydrogen-bonding effect and flame retardant mechanism are characterized and studied. This work overcomes the shortcomings of traditional flame retarding approaches and provides an effective strategy for the preparation of flame retardant polymers with an excellent performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call