Abstract

Diels–Alder (DA) cycloadditions in reversible polymer networks are important for designing sustainable materials with self-healing properties. In this study, the DA kinetics of hydroxyl-substituted bis- and tetrafunctional furans with bis- and tris-functional maleimides, both containing ether-functionalized spacers, is investigated by modelling two equilibria representing the endo and exo cycloadduct formation. Concretely, the potential catalysis of the DA reaction through hydrogen bonding between hydroxyl of the furans and carbonyl of the maleimides or ether of the spacers is experimentally and theoretically scrutinized. Initial reaction rates and forward DA rate constants are determined by microcalorimetry at 20 °C for a model series of reversible networks, extended with (i) a hydroxyl-free network and hydroxyl-free linear or branched systems, and (ii) polypropylene glycol additives, increasing the hydroxyl concentration. A computational density-functional theory study is carried out on the endo and exo cycloadditions of furan and maleimide derivatives, representative for the experimental ones, in the absence and presence of ethylene glycol as additive. Additionally, an ester-substituted furan was investigated as a hydroxyl-free system for comparison. Experiment and theory indicate that the catalytic effect of H-bonding is absent or very limited. While increased concentration of H-bonding could in theory catalyze the DA reaction, the experimental results rule out this supposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.