Abstract
Thioamide substitution of backbone peptide bonds can probe interactions along the main chain of proteins. Despite theoretical predictions of the enhanced hydrogen bonding propensities of thioamides, previous studies often do not consider the geometric constraints imposed by folded peptide secondary structure. This work addresses drawbacks in previous studies that ignored the geometry dependence and local dielectric properties of thioamide hydrogen bonding and identifies cases where thioamides may be either stronger or weaker hydrogen-bonding partners than amides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.