Abstract

Metaphosphorous acid (HOPO), a key intermediate in phosphorus chemistry, has been generated in syn- and anti-conformations in the gas phase by high-vacuum flash pyrolysis (HVFP) of a molecular precursor ethoxyphosphinidene oxide (EtOPO→C2 H4 +HOPO) at ca. 1000 K and subsequently trapped in an N2 -matrix at 2.8 K. Unlike the two conformers of the nitrogen analogue HONO, the anti-conformer of HOPO undergoes spontaneous rotamerization at 2.8 K via hydrogen-atom tunneling (HAT) with noticeable kinetic isotope effects for H/D (>104 for DOPO) and 16 O/18 O (1.19 for H18 OPO and 1.06 for HOP18 O) in N2 -matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.