Abstract

Hydrogen atom transfer (HAT) reactions of the bis(histidine) cytochrome active site models (TPP)FeII(ImH)2 (FeIIImH) and (TPP)Fe(Im)(ImH) (FeIIIIm) have been examined in acetonitrile solvent (TPP = tetraphenylporphyrin, ImH = 4-methylimidazole). The ascorbate derivative 5,6-isopropylidine ascorbate, hydroquinone, and the hydroxylamine TEMPOH all rapidly add H* to FeIIIIm to give FeIIImH. Similarly, the phenoxyl radical 2,4,6-tBu3C6H2O* and excess TEMPO* each oxidize FeIIImH to give FeIIIIm. On the basis of redox potential, pKa, and equilibrium measurements, the N-H bond in FeIIImH was found to have a bond dissociation free energy (BDFE) of 70 +/- 2 kcal mol(-1). A hydrogen atom transfer mechanism (concerted transfer of e- and H+) is indicated based on data for the ascorbate and TEMPO* reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.