Abstract

The transfer of a hydrogen atom from iron(II)-tris[2,2'-bi(tetrahydropyrimidine)], [FeII(H2bip)3]2+, to the stable nitroxide, TEMPO, was studied by stopped-flow UV-vis spectrophotometry. The products are the deprotonated iron(III) complex [FeIII(H2bip)2(Hbip)]2+ and the hydroxylamine, TEMPO-H. This reaction can also be referred to as proton-coupled electron transfer (PCET). The equilibrium constant for the reaction is close to 1; thus, the reaction can be driven in either direction. The rate constants for the forward and reverse reactions at 298 K are k1 = 260 +/- 30 M-1 s-1 and k-1 = 150 +/- 20 M-1 s-1. Interestingly, the rate constant for the forward reaction decreases as reaction temperature is increased, implying a negative activation enthalpy: DeltaH1 = -2.7 +/- 0.4 kcal mol-1, DeltaS1 = -57 +/- 8 cal mol-1 K-1. Marcus theory predicts this unusual temperature dependence on the basis of independently measured self-exchange rate constants and equilibrium constants: DeltaHcalcd = -3.5 +/- 0.5 kcal mol-1, DeltaScalcd = -42 +/- 10 cal mol-1 K-1. This result illustrates the value of the Marcus approach for these types of reactions. The dominant contributor to the negative activation enthalpy is the favorable enthalpy of reaction, DeltaH1 degrees = -9.4 +/- 0.6 kcal mol-1, rather than the small negative activation enthalpy for the H-atom self-exchange between the iron complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call