Abstract
This work shows the experimental results from methane-acetylene rich combustion inside an inert porous media burner with the specific goal of improving the performance of inert porous media burners for hydrogen and syngas production. A cylindrical burner was implemented where temperatures, velocities, and chemical species concentrations were acquired for methane-air mixtures with acetylene addition at different equivalence ratios. Recorded combustion wave temperature profiles retain their sinusoidal like behavior for fuel-rich mixtures. Acetylene addition increases the temperature of the reaction and syngas production for a range of equivalence ratios. It is shown that by adding a small amount of acetylene (2.5% of the total fuel-air mixture), increments in the H2 production of up to 3.04% and 0.36% were achieved for ∅ = 1.2 and ∅ = 2.4, respectively. While an 11% increment on the CO production was recorded for ∅ = 1.2, which presents an opportunity to determine the optimized conditions. Methane-acetylene rich combustion showed improvements on hydrogen and syngas production when compared to methane-air rich mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.