Abstract

A proton exchange membrane (PEM) is an important component of a polymer electrolyte fuel cell (PEFC) from the viewpoint of proton transport. Only protons are desired to be transported through a membrane, but the feed gases also permeate. The permeation of the feed gas through a membrane affects the PEFC performance. Temperature and relative humidity dependencies of the hydrogen and oxygen permeability through a perfluorosulfonic acid (PFSA) membrane were measured. By considering that a membrane consists of three layers, i.e. a bulk layer sandwiched between skin layers, the transport properties of each layer were separated. The bulk layer effective diffusion coefficients of hydrogen and oxygen through both a PEM and an MEA were formulated as a function of temperature and RH. The oxygen transfer coefficient in the skin layer increased with RH, whereas the hydrogen transfer coefficient was almost constant regardless of RH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call