Abstract

The clay fractions of sedimentary kaolin deposits representing different ages (Carboniferous and Cretaceous), types (pisolitic flint and plastic), and localities (Sinai and Aswan) from Egypt were analyzed for their H and O isotopic compositions to examine the paleoclimate conditions during their formation. The δD values of the Carboniferous deposits in Sinai range between −67‰ and −88‰, while the values for the Cretaceous deposits in Sinai range between −59‰ and −75‰. The δ18O values of the Carboniferous deposits range from 17.9‰ to 19.4‰ and the values for the Cretaceous deposits range between 19.2‰ and 20.4‰. The relatively low δD and δ18O values of the Carboniferous deposit at the Abu Natash area (−67‰ and 17.9‰, respectively) compared to other Carboniferous deposits (averages of −83.3‰, and 18.8‰ for δD and δ18O, respectively) could be due to isotopic exchange between this deposit and the adjacent dolomite and/or the enclosed hydrothermally-formed Mn ores of the Carboniferous Um Bogma Formation. The δD and δ18O values of the Cretaceous pisolitic flint kaolin deposit from Aswan (averages of −65‰ and 20.3‰, respectively) and plastic kaolin from the same area (averages of −66‰ and 19.5‰, respectively) are almost identical. The differences in the δ18O values between the clay fractions of the pisolitic flint kaolin (20.3‰) and the previously analyzed bulk kaolin of the same deposit (average of 17.5‰) suggest a significant effect of non-clay minerals on the isotopic compositions of the kaolin deposits.The H and O isotopic compositions plot close to the kaolinite line that marks the isotopic composition of kaolinite in equilibrium with meteoric water at 20°C. This indicates that the kaolinite from both the Carboniferous and Cretaceous deposits in Egypt formed by meteoric water weathering of the source rock(s). The δD and δ18O values also suggest that kaolinite of these deposits formed under warm-temperate to tropical conditions. The slight deviations of some samples from the kaolinite line suggest post-depositional modifications of the isotopic compositions of studied deposits probably due to the interaction between earlier-formed kaolinite and downward percolating meteoric water.The δD and δ18O values of the Cretaceous and Carboniferous deposits from all localities suggest that both deposits formed under similar climatic conditions due to the location of Egypt at almost the same distance from the equator either to the south during the Carboniferous or to the north during the Cretaceous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.