Abstract
The spectroscopic properties of a selected optical photospheric spectra of core collapse supernovae (CCSNe) are investigated.Special attention is devoted to traces of hydrogen at early phases. The generated spectra are found to match the observed ones reasonably well, including a list of only 23 candidate ions. Guided by SN Ib 1990I, the observed trough near 6300\AA is attributed to H$\alpha$ in almost all Type Ib events, although in some objects it becomes too weak to be discernible, especially at later phases. Alternative line identifications are discussed. Differences in the way hydrogen manifests its presence within CCSNe are highlighted. In Type Ib SNe, the H$\alpha$ contrast velocity (i.e. line velocity minus the photospheric velocity) seems to increase with time at early epochs, reaching values as high as 8000 km s$^{-1}$ around 15-20 days after maximum and then remains almost constant. The derived photospheric velocities, indicate a lower velocity for Type II SNe 1987A and 1999em as compared to SN Ic 1994I and SN IIb 1993J, while Type Ib events display a somewhat larger variation. The scatter, around day 20, is measured to be $\sim$5000 km s$^{-1}$. Following two simple approaches, rough estimates of ejecta and hydrogen masses are given. A mass of hydrogen of approximately 0.02 $M_\odot$ is obtained for SN 1990I, while SNe 1983N and 2000H ejected $\sim$0.008 $M_\odot$ and $\sim$0.08 $M_\odot$ of hydrogen, respectively. SN 1993J has a higher hydrogen mass, $\sim 0.7$ $M_\odot$ with a large uncertainty. A low mass and thin hydrogen layer with very high ejection velocities above the helium shell, is thus the most likely scenario for Type Ib SNe. Some interesting and curious issues relating to oxygen lines suggest future investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.