Abstract

The energy levels of hydrogen and helium atoms in strong magnetic fields are calculated in this study. The current work contains estimates of the ground and first few excited states of these systems that are improvements upon previous estimates. The methodology involves computing the eigenvalues and eigenvectors of the generalized two-dimensional Hartree-Fock partial differential equations for these oneand two-electron systems in a self-consistent manner. The method described herein is applicable to calculations of atomic structure in magnetic fields of arbitrary strength as it exploits the natural symmetries of the problem without assumptions of any basis functions for expressing the wave functions of the electrons or the commonly employed adiabatic approximation. The method is found to be readily extendable to systems with more than two electrons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.