Abstract

A microbial photoelectrochemical cell (MPEC) was designed with a p-type CaFe2O4 semiconductor as the photoelectrode for simultaneous hydrogen and electricity production under light illumination. The CaFe2O4 photoelectrode was synthesized by the sol–gel method and well characterized by x-ray diffraction, field emission scanning electron microscope, and UV–Vis–NIR spectrophotometer. The linear sweep voltammogram of the CaFe2O4 photoelectrode presented the cathodic photocurrent output. For the MPEC, with an external resistance of 2000 Ω, the maximum power density of 143 mW·m−2 was obtained. Furthermore, with an external resistance of 100 Ω, the maximum hydrogen production rate of 6.7 μL·h−1·cm−2 could be achieved. The MPEC with CaFe2O4 photocathode was compared to MPEC with other photocathodes as well as photocatalytic water splitting technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.