Abstract
In order to decrease the electricity consumption of water electrolysis, we investigated a novel hydrazine-assisted water electrolysis for electricity-independent hydrogen production, featuring with lower anodic hydrazine oxidation reaction (HzOR) than cathodic hydrogen evolution reaction (HER). The adsorption and semiconductor characteristics of hierarchical porous CoNS@CuPD, interlacing by Co(OH)2 nanosheets on the Cu dendrites surface, are selectively modified to optimize anodic HzOR and cathodic HER performance through doping B and P heteroatoms, respectively. The working potential of HzOR on B-doped CoNS@CuPD negatively shifts to − 146 mV at 10 mA cm−2, while that of HER on P-doped CoNS@CuPD positively shifts to − 70 mV. Consequently, the hydrazine electrolysis device using B-/P-doped catalysts output a small voltage of 60 mV at 10 mA cm−2, achieving co-generation of hydrogen and electricity for the first time. This work brings an intrinsic break in hydrogen-rich molecule-assisted water electrolysis for hydrogen production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.