Abstract

The deuterium permeation through several copper alloys has been measured over a temperature range of 550 to 830 K using the membrane technique. In some cases, the hydrogen permeability was also measured. The results were divided into three categories: common alloys, gold alloys, and stable oxide forming alloys. Common alloys which showed typical bulk metallic diffusion with litle change in the permeation activation energy as compared to copper (77 kJ/mol for D2) were: (additions are in weight percent) 5% Sn, 2.3% U, 0.15% Zr, 4% Sn+4% Pb+4% Zn, 3% Si, and 7% Al+2% Fe. Compared to copper, the D2 permeability at 573 K was reduced by factors of 2.0, 2.7, 4.5, 5.3, 5.9, and 7.0, respectively. A series of gold–copper alloys including pure gold, 80% Au, 50% Au, 49% Au, and 35% Au also showed typical bulk metallic diffusion with a trend of decreasing permeability (increasing activation energies for permeation) with increasing gold content. There were also pronounced inflections or shifts in the permeability at ∠370°C, or about the order–disorder transition for Cu3Au and CuAu, for the 80% and 50% alloys. Two alloys did not exhibit bulk metallic permeation behavior and the permeabiltiy was in fact controlled by surface oxide layers. It was found that a layer of beryllium oxide could be formed on Cu+2% Be and a layer of aluminum oxide could be formed on Cu+7% Al+2% Si. As compared to 0.25 mm-thick copper, the deuterium permeability at 500°C was reduced by a factor of ∠250 for Cu–Be and ∠1000 for Cu–Al–Si. The activation energies for deuterium permeation were 98 kJ/mol and 132 kJ/mol, respectively. The mechanism for the oxide growth is the high-temperature hydrogen reduction of nearby less stable oxides, simultaneous with oxidation of the active metal, Be or Al, by trace amounts of water in the hydrogen. Ion microprobe mass analysis identified the oxide layers as containing beryllium or aluminum but not containing copper. The trend of activation energies found lends support to a theoretical model that relates the activation energy for diffusion to the shear modulus of the host oxide and the molecular radius of the diffusing molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.