Abstract

It has been concluded by geologists that a significant amount of hydrogen is stored as point defects in nominally anhydrous minerals. Determination of the amount of hydrogen bound in these minerals is a step towards determining the total water content of the earth mantle as well as comprehending its internal water cycle. The possibility to measure hydrogen in thin geological samples by elastic p–p scattering has been investigated at the Lund Nuclear Microprobe. In this work the development of the experimental procedure and standardisation of data analysis is described. Special emphasis has been put into doing the data analysis as simple as possible and at the same time applicable to all sorts of thin samples, even those of unknown nature. A special annular surface barrier detector composed of two insulated detector halves, which are read out simultaneously, is used to detect the recoiled proton and the scattered proton in coincidence. Conditions on the difference in time and energy of the detected particles, enables us to distinguish true hydrogen events from false or random ones. Homogeneous Mylar foils with known hydrogen content are used as reference material and enables determination of the total amount of hydrogen in the bulk of the geological samples as well as depth profiling, in order to separate contaminations in the surface from the bulk concentrations. The method has been tested with a 2.8 MeV proton beam on thin samples of both Muscovite, which is known to have a natural hydrogen concentration of about 0.5 wt%, and Pyroxene, which is a nominally anhydrous mineral.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.