Abstract

The physical and chemical properties of transition metal nanoclusters have been extensively investigated. In particular, we study the energetics of the mixed clusters Pt4−nNin, focusing on the binding energy of the clusters Ebind to a graphene support, and the hydrogenation energy Eads in both the gas-phase and the graphene-supported clusters. For each cluster composition, the cluster can bind to graphene in either a face-on or an edge-on configuration, and in each of these orientations, binding can occur through different atoms; we explore these binding configurations comprehensively. We discuss the variation of Ebind and Eads with respect to the composition of the cluster and the binding configuration of the cluster to the graphene support. Our results show that hydrogen is generally chemisorbed at a Pt site and physisorbed at a Ni site, with a dependence of the adsorption energy upon the composition and the adsorption configuration. Compared with the gas-phase cluster, the chemisorption energies are ge...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call