Abstract

Hydrogen adsorption is calculated for model microporous adsorbents with slitlike micropore widths of 0.538, 0.878, and 1.218 nm obtained by the consecutive exclusion of one, two, and three layers of hexagonal carbon from graphite structure taken as a model cell. Calculations are performed using the basic concepts of the theory of volume filling of micropores, Dubinin-Radushkevich equation, and linear adsorption isosteres. For structures with one-and two-layer carbon walls, the calculation is carried out at temperatures of 20, 33, 77, 200, 300, and 400 K and pressures up to 20 MPa. For AC3:5 structure, the maximum hydrogen adsorption amounts to 7.9 wt % at 20 MPa and 300 K. The parameters of adsorbent porous structure are established. Hydrogen adsorption is shown to be governed by the capacity and the energy of adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.