Abstract
The fracture mechanisms of two different LaNi5 alloys (A and B) have been investigated during the first few hydrogen loading/unloading cycles that constitute activation of this material. The principal difference between the two formulations was the presence of Nideficient planar inclusions, oriented perpendicular to the crystallographicc-axis, in alloy A. Both types were found to fracture at high loadings of hydrogen (hydrogen-to-metal ratios of ca. 1) during the activation cycle, as a result of the differential expansion between the microdomains of the α-and β-hydride phases. However, alloy A also fractured at an earlier stage in the activation cycle, at very low hydrogen-to-metal ratios (≤0.06), by delamination at the planar inclusion boundaries. This had the effect of reducing the hysteresis during the first activation cycle, most probably due to faster kinetics. The implication is that the hydrogen storage properties of the alloy can be tailored by microstructural design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.