Abstract

Abstract Hydrogen-acceptor interactions are investigated in boron-doped diamond through deuterium diffusion experiments followed by SIMS measurements and through infrared absorption spectroscopy. From deuterium diffusion, we show that BD interactions can be properly demonstrated in low compensation B-doped homoepitaxial layers. However, the presence of defects in such layers strongly affects this interaction. The degree of passivation of boron acceptors by deuterium depends on the diffusion temperature. At 550°C or below, the B and D concentrations exactly match giving rise to a complete disappearance of the absorption bands related to the electronic transitions of neutral boron acceptors. Under thermal annealing above 500°C, (B,D) pairs dissociate and neutral boron acceptors recover. At deuterium diffusion temperatures of 700°C, the B passivation is absent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.