Abstract

The reaction of triplet p-benzoquinone in several solvents, such as ethanol, 2-propanol, ethylene glycol, t-butanol, 1,4-dioxane, tetrahydrofuran and cyclohexane, has been studied. The primary photochemical event was shown to be a hydrogen atom abstraction from the solvent and not an electron transfer. In the time-resolved EPR experiments, in all cases, except t-butanol and cyclohexane, the radicals from the solvent were recorded along with p-benzosemiquinone radical and the spectra were dominated by triplet mechanism of spin polarization, giving totally emissive EPR signals. The sites of abstracted hydrogen atom have been identified. In particular, whereas the methine hydrogen atom is abstracted from 2-propanol, both the methylene and hydroxyl hydrogen atoms are abstracted from ethanol. From laser flash photolysis experiments, the rate constants of the hydrogen abstraction in all solvents, except t-butanol and cyclohexane, were found to be (1–5) × 108 M−1 s−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call