Abstract

As a hydrogen storage material, palladium nanoparticle decorated nitrogen doped graphene (Pd/N-rGO) has drawn much attention owing to its high absorption capacity at moderate conditions. However, its hydrogen absorption-desorption cycle performance, which is essential for their practical application, has been rarely studied. In this paper, a simple and convenient high temperature thermal reduction method was used to synthesize nitrogen-doped graphene decorated with Pd nanoparticles (Pd/N-rGO). Taken it as a representative, the hydrogen absorption-desorption cycle performance of Pd/N-rGO was investigated. The results showed that after three cycles the hydrogen storage capacity dropped from 2.9 ​wt% to 0.8 ​wt% at 25 ​°C and 4 ​MPa pressure. It was found that the palladium nanoparticles shed from Pd/N-RGO sheet after cycle performance test, and then agglomerated. These phenomena will weaken the hydrogen spillover effect, leading to the decrease of hydrogen storage capacity. Meanwhile, decreased defects reduce the hydrogen absorption sites, which will thus deteriorate the hydrogen storage capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.