Abstract
The self-assembly of α-cyclodextrin (α-CD) mixed with a fluorocarbon surfactant, perfluorononanoic acid (PFNA), in aqueous solution was studied. Interestingly, the 1:1 inclusion complex, PFNA@α-CD, was verified to form by 1H nuclear magnetic resonance measurement. Also as the building block, the PFNA@α-CD complex was further self-assembled into worm-like micelles under lower concentrations while hydrogels were self-assembled under higher concentrations. The hydrogels were composed of unilamellar vesicles with polydisperse size, which were clearly detected by freeze-fracture transmission electron microscopy measurements. Besides, the vesicle hydrogels showed high viscoelasticities and a substantial elastic characteristic. Also as revealed by the results of Fourier transform infrared measurements, the driving force for the vesicle and worm-like micelle formation was the hydrogen bonding between α-CD molecules. Then, these vesicles were densely packed to form hydrogels. As far as we know, the self-assembly of CDs and fluorocarbon surfactants based on host-guest inclusion in aqueous solution has been limitedly reported. Our work successfully constructed hydrogels consisting of vesicles through the self-assembly of the α-CD/PFNA complex for the first time and will also provide a better understanding and enrich the fundamental research of the self-assembly behavior of the CD/fluorosurfactant complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.