Abstract

Hydrogels are characterized by their property of absorbing and releasing a high content of water and water-based liquids; thus, they can be applied in agriculture as controlled-release water and fertilizer products. The focus of this research was efficient and low-cost natural polymer-based hydrogels obtained by crosslinking gellan gum (GGLA) and starch (ST) with acetic acid (CA) and loading them with either bentonite (BET) and/or halloysite (HAL). The hydrogels were obtained by mixing 100, 75, 50, 25, and 0 wt.% of GGLA with 0, 25, 50, 75, and 100 wt.% ST water solutions. To obtain the networks, they were crosslinked with 10, 5, and 2 wt.% of CA and loaded with 2, 5, and 10 wt.% of BET and/or HAL. The samples were analyzed by infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), their swelling in water, and the state of bound water properties. The results of these analyses point to the formation of a polymeric network with a decomposition temperature of >250 °C, and tailorable swelling properties that vary between 3 and 77, depending on the hydrogel composition. In summary, GGLA-ST-BET/HAL hydrogels are a good option for eco-friendly agriculture materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.