Abstract
Cadmium (Cd) removal from soil to reduce Cd accumulation in plants is essential for agroecology, food safety, and human health. Cd enters plants from soil and affects plant growth and development. Hydrogels can easily combine with Cd, thereby altering its bioavailability in soil. However, few studies have evaluated the effects of hydrogel on the complex phytotoxicity caused by Cd uptake in plants and the microbial community structure. Herein, a new poly (acrylic acid)-grafted starch and potassium humate composite (S/K/AA) hydrogel was added to soil to evaluate its impact on tobacco growth and the soil microenvironment. The results indicate that the addition of S/K/AA hydrogel can significantly improve the biomass, chlorophyll (Chl) content, and photosynthetic capacity of tobacco plants during Cd stress conditions, and decrease Cd concentration, probably by affecting Cd absorption through the expression of Cd absorption transporters (e.g., NRAMP5, NRAMP3, and IRT1). Moreover, the application of S/K/AA hydrogel not only reduced the accumulation of reactive oxygen species (ROS), but also reduced the antioxidant activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), suggesting that S/K/AA hydrogel alleviates Cd toxicity via a non-antioxidant pathway. Notably, we further analyzed the effectiveness of the hydrogel on microbial communities in Cd-contaminated soil and found that it increased the Cd-tolerant microbial community (Arthrobacter, Massilia, Streptomyces), enhancing the remediation ability of Cd-contaminated soil and helping tobacco plants to alleviate Cd toxicity. Overall, our study provides primary insights into how S/K/AA hydrogel affects Cd bioavailability and alleviates Cd toxicity in plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.