Abstract

In the present work, high-resolution magic angle spinning (hr-MAS) NMR spectroscopy is applied as a straightforward nondestructive technique to quantify unreacted methacrylamide functionalities in cross-linked gelatin hydrogels. By adjusting several cross-linking parameters including the ultraviolet (UV) irradiation time and the photo-initiator concentration, the cross-linking degree can be easily varied. Remarkably, under all experimental conditions typically applied for hydrogel development, no more than 40% of the methacrylamide moieties present have reacted. The hr-MAS based approach to determine the cross-linking efficiency is shown to provide an innovative and more convenient alternative to the well-established classical techniques. In addition, the results obtained are in good correlation with mechanical analysis data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.