Abstract

Cancer vaccines have attracted widespread interest in tumor therapy because of the potential to induce an effective antitumor immune response. However, many challenges including weak immunogenicity, off-target effects, and immunosuppressive microenvironments have prevented their broad clinical translation. To overcome these difficulties, effective delivery systems have been designed for cancer vaccines. As carriers in cancer vaccine delivery systems, hydrogels have gained substantial attention because they can encapsulate a variety of antigens/immunomodulators and protect them from degradation. This enables hydrogels to simultaneously reverse immunosuppression and stimulate the immune response. Meanwhile, the controlled release properties of hydrogels allow for precise temporal and spatial release of loads in situ to further enhance the immune response of cancer vaccines. Therefore, this review summarizes the classification of cancer vaccines, highlights the strategies of hydrogel-based cancer vaccines, and provides some insights into the future development of hydrogel-based cancer vaccines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.