Abstract

AbstractGrafting of agar and κ‐carrageenan with polyvinylpyrrolidone (PVP, average molecular weight 10,000 D) in an aqueous medium at a pH of about 7 produced agar‐graft‐PVP and κ‐carrageenan‐graft‐PVP blends capable of forming hydrogels. The reaction was carried out with microwave irradiation in the presence of a water‐soluble initiator, potassium persulfate. Optimum microwave irradiation conditions for obtaining hydrogels of the grafted products were achieved. The structural characteristics and thermal stability of the grafted blends were studied by Fourier transform infrared, 13C‐NMR, and thermogravimetric analyses. Appearance of new IR bands at 1661, 1465, and 1426 cm−1 in the grafted products indicated the insertion of PVP into the polysaccharide structure. Powder X‐ray diffraction studies revealed the enhanced crystallinity in the products compared to in the control polysaccharides as well as PVP. Agar and κ‐carrageenan were grafted to a considerable degree, with 62.5 E % and 125 G % for agar‐graft‐PVP and 65.5 E % and 131 G % for κ‐carrageenan‐graft‐PVP. Optical micrographs of the grafted blends indicated considerable changes in the morphology of the agar and the κ‐carrageenan, substantiating the X‐ray diffraction data. A plausible mechanism for the crosslinking of PVP to agar and κ‐carrageenan is proposed. These hydrogels exhibited enhanced water‐holding capacity despite weaker gel strength than that in the respective control polysaccharides. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3654–3663, 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.