Abstract

Acute myocardial infarction (AMI) is one of the most fatal diseases in the world in recent decades. Because rapid and accurate determination of AMI has the potential to save millions of lives globally, the development of new diagnostic method is of great significance. Here, we designed a magnetic responsive structural color core-shell hydrogel microcarrier as a novel platform for a high-throughput detection of a variety of cardiovascular biomarkers. The composite hydrogel shell was formed from methacrylated gelatin, acrylic acid, and poly(ethylene glycol diacrylate), and the core silica photonic crystals acted as a detector. Fe3O4 nanoparticles were infused into the void of the core-shell structure to impart magnetic response properties to the encoded carrier. The findings indicated that our method possessed high sensitivity and reliable specificity in the high-throughput detection of AMI-related biomarkers Myo, cTnI, and BNP. In addition, the developed method not only showed good specificity and high sensitivity in clinical samples but also was comparable to the clinical gold standard method. Therefore, the magnetic response structural color core-shell hydrogel carriers were regarded as a potential approach to detect some AMI disease-related biomarkers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call