Abstract
Implementing novel oral drug delivery systems with controlled drug release behavior is valuable in cancer therapy. Herein, a green synthetic approach based on the sol-gel technique was adopted to prepare MgFe2O4 nanoparticles at different calcination temperatures using citric acid as a chelating/combustion agent. In this context, pH-responsive and magnetic carboxymethyl starch/alginate hydrogel beads (CMCS-SA) containing the MgFe2O4 nanoparticles were developed as potential drug carriers for the anticancer drug (Doxorubicin, Dox) release in simulated gastrointestinal fluids. Furthermore, in vitro release behaviors validated that these beads illustrated excellent stability in the simulated stomach liquids. In contrast, the data in simulated intestinal fluids showed sustained release of Dox because of their pH-sensitive swelling characteristics. Notably, applying an external magnetic field (EMF) could accelerate drug release from the beads. The in vitro release of drugs from gel beads was mainly accomplished by a combination of diffusion, swelling and erosion. Moreover, the cell cytotoxicity test and laser confocal results showed no harmful effects on normal cells (3T3) but were significant cytotoxic to colon cancer cell lines (HCT116) by drug-loaded hydrogel beads. Therefore, the prepared gel beads could be qualified as latent platforms for controlling the release of anticancer drugs in cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.