Abstract

In this study, an innovative gas sensing mechanism, self-responsive sensing mechanism, has been detected in the supramolecular hydrogel-based sensors. The self-responsive ability of as-fabricated hydrogel-based sensors to the target gas (e.g., NO2, NH3, etc.) is determined by three synergetic supramolecular interactions, namely, hydrogen bonding, molecule crystallization, and electrostatic interactions existing in hydroxyls, poly(vinyl alcohol) (PVA) crystallization, and poly(ionic liquids) of the intrinsic hydrogel networks, respectively. On account of unique synergetic supramolecular interactions, the sensors not only exhibit a rapid, reversible, and reproducible response but also show good tensile and compressive properties and excellent recovery property. The results demonstrate the potential of the self-responsive sensing mechanism as a pathway to realize a new generation of highly responsive hydrogel-based gas sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.