Abstract
In this research, a novel Resonance Rayleigh Scattering (RRS) aptasensor was developed for thrombin monitoring using in-situ synthesized and embedded Au nanoparticles (AuNPs) into poly vinyl alcohol –borax hydrogel (PBH). Thiolated-thrombin binding aptamer (thiolated-TBA) was attached to the surface of AuNPs embedded into PBH to design the PBH-aptasensor for thrombin detection (thiolated-TBA@AuNPs–PBH). To verify the characteristic and morphology of PBH nanocomposite, energy dispersive X-ray analysis, TEM, average particle size analizer and UV–Vis spectra were performed. The difference in RRS intensities in the absence and presence of thrombin was calculated and selected as the monitoring signal. Effect of different parameters on the RRS signal was investigated at excitation wavelength of 500 nm. Under the approved conditions, the linear detection range was validated over the concentration of 0.70 pM- 0.02 μM. The limit of detection based on 3Sb was 0.10 pM. The relative standard deviation for 5.6 pM and 3.6 nM were 4.0 and 2.7% (n = 10), respectively. The proposed aptasensor was successfully applied as an experimental model for thrombin detection in serum samples of healthy volunteers with acceptable results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.